LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cellular Lnc_209997 suppresses Bombyx mori nucleopolyhedrovirus replication by targeting miR-275-5p in B. mori.

Photo by ospanali from unsplash

Long non-coding RNA (lncRNA) is a type of non-coding RNA molecule, which exceeds 200 nucleotides in length and participates in the regulation of a variety of life activities. Recent studies… Click to show full abstract

Long non-coding RNA (lncRNA) is a type of non-coding RNA molecule, which exceeds 200 nucleotides in length and participates in the regulation of a variety of life activities. Recent studies showed that lncRNAs play important roles in viral infection and host immunity. At present, the researches on insect lncRNAs are relatively few. In this study, we found the expression of Lnc_209997 was significantly down-regulated in silkworm fat body infected with Bombyx mori nucleopolyhedrosis virus (BmNPV). Inhibition of Lnc_209997 promoted BmNPV replication. Enhancing the expression of Lnc_209997 inhibited the proliferation of BmNPV. miR-275-5p was up-regulated in silkworm fat body infected with BmNPV. Dual luciferase reporter gene system confirmed the interaction between Lnc_209997 and miR-275-5p. Over-expression of Lnc_209997 inhibited the expression of miR-275-5p, while inhibition of Lnc_209997 enhanced the expression of miR-275-5p. Further, over-expression of miR-275-5p can facilitate the replication of BmNPV. These results suggested that BmNPV could increase the expression of miR-275-5p by inhibiting cellular Lnc_209997 expression to promote their own proliferation. Our results are helpful for better understanding the role of lncRNAs in BmNPV infection, and provide insights into elucidating the molecular mechanism of interaction between Bombyx mori and virus. This article is protected by copyright. All rights reserved.

Keywords: expression; lnc 209997; mir 275; bombyx mori; replication; bmnpv

Journal Title: Insect molecular biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.