LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

University students' cognitive performance under temperature cycles induced by direct load control events

Photo from wikipedia

As one of the most common strategies for managing peak electricity demand, direct load control (DLC) of air-conditioners involves cycling the compressors on and off at predetermined intervals. In university… Click to show full abstract

As one of the most common strategies for managing peak electricity demand, direct load control (DLC) of air-conditioners involves cycling the compressors on and off at predetermined intervals. In university lecture theaters, the implementation of DLC induces temperature cycles which might compromise university students' learning performance. In these experiments, university students' learning performance, represented by four cognitive skills of memory, concentration, reasoning, and planning, was closely monitored under DLC-induced temperature cycles and control conditions simulated in a climate chamber. In Experiment 1 with a cooling set point temperature of 22°C, subjects' cognitive performance was relatively stable or even slightly promoted by the mild heat intensity and short heat exposure resulting from temperature cycles; in Experiment 2 with a cooling set point of 24°C, subjects' reasoning and planning performance observed a trend of decline at the higher heat intensity and longer heat exposure. Results confirm that simpler cognitive tasks are less susceptible to temperature effects than more complex tasks; the effect of thermal variations on cognitive performance follows an extended-U relationship with performance being relatively stable across a range of temperatures. DLC appears to be feasible in university lecture theaters if DLC algorithms are implemented judiciously.

Keywords: temperature; cognitive performance; temperature cycles; performance; university students

Journal Title: Indoor Air
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.