LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulating indoor inorganic aerosols of outdoor origin with the inorganic aerosol thermodynamic equilibrium model ISORROPIA.

Photo by thinkmagically from unsplash

Outdoor aerosols can transform and have their composition altered upon transport indoors. Herein, IMAGES, a platform that simulates indoor organic aerosol with the 2-dimensional volatility basis set (2D-VBS), was extended… Click to show full abstract

Outdoor aerosols can transform and have their composition altered upon transport indoors. Herein, IMAGES, a platform that simulates indoor organic aerosol with the 2-dimensional volatility basis set (2D-VBS), was extended to incorporate the inorganic aerosol thermodynamic equilibrium model, ISORROPIA. The model performance was evaluated by comparing aerosol component predictions to indoor measurements from an aerosol mass spectrometer taken during the summer and winter seasons. Since ammonia was not measured in the validation dataset, outdoor ammonia was estimated from aerosol measurements using a novel pH-based algorithm, while nitric acid was held constant. Modeled indoor ammonia sources included temperature-based occupant and surface emissions. Sensitivity to the nitric acid indoor surface deposition rate β g , HNO 3 , g was explored by varying it in model runs, which did not affect modeled sulfate due to its non-volatile nature, though the fitting of a filter efficiency was required for good correlations of modeled sulfate with measurements in both seasons. Modeled summertime nitrate well-matched measured observations when β g , HNO 3 , g = 2.75 h - 1 , but wintertime comparisons were poor, possibly due to missing thermodynamic processes within the heating, ventilating, and air-conditioning (HVAC) system. Ammonium was consistently overpredicted, potentially due to neglecting thirdhand smoke impacts observed in the field campaign, as well as HVAC impacts.

Keywords: aerosol thermodynamic; inorganic aerosol; model isorropia; equilibrium model; model; thermodynamic equilibrium

Journal Title: Indoor air
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.