LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sodium-potassium niobate nanorods with various crystal structures and their application to nanogenerator

Photo from academic.microsoft.com

(Na1−xKx)NbO3 (NKN) nanorods with an orthorhombic (OR) structure, a rhombohedral (RH) structure, or a polymorphic phase (PP) structure, which contains both OR and RH structures, are prepared. The presence of… Click to show full abstract

(Na1−xKx)NbO3 (NKN) nanorods with an orthorhombic (OR) structure, a rhombohedral (RH) structure, or a polymorphic phase (PP) structure, which contains both OR and RH structures, are prepared. The presence of RH and PP NKN nanorods is explained by the existence of OH− defects at the O2− sites of the NKN nanorods. The PP NKN nanorods grown on a Nb5+-doped SrTiO3 substrate show the largest piezoelectric strain constant of 175 pm/V because they have more directions for dipole rotation than OR and RH NKN nanorods. Piezoelectric nanogenerators (NGs) are synthesized using composites consisting of NKN nanorods with various structures and polydimethylsiloxane. The largest open-circuit output voltage is 35 V, and the short-circuit current is 5.0 μA, which are obtained using the NG containing 0.7 g of PP NKN nanorods. Moreover, this NG shows a maximum output power of 16.5 μW for an external load of 10.0 MΩ.

Keywords: sodium potassium; potassium niobate; nanorods various; various crystal; nkn nanorods; niobate nanorods

Journal Title: Journal of the American Ceramic Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.