LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of chlorogenic acid on the quorum sensing system of clinically isolated multidrug-resistant Pseudomonas aeruginosa.

Photo from wikipedia

AIMS Quorum sensing (QS) is the intercellular communication used by bacteria to regulate collective behavior. QS regulates the production of virulence factors in many bacterial species and is considered to… Click to show full abstract

AIMS Quorum sensing (QS) is the intercellular communication used by bacteria to regulate collective behavior. QS regulates the production of virulence factors in many bacterial species and is considered to be an attractive target for reducing bacterial pathogenicity. Chlorogenic acid (CA) is abundant in vegetables, fruits, and traditional Chinese medicine, and has multiple activities. This study, aimed to investigated the QS quenching activity of CA against clinically isolated multidrug-resistant Pseudomonas aeruginosa. METHODS AND RESULTS The results showed that CA inhibited the mobility of bacteria, reduced the production of pyocyanin, and inhibited the activity of elastase. Furthermore, crystal violet staining and scanning electron microscope experiments showed that CA inhibited the formation of multidrug-resistant P. aeruginosa biofilm. CA at or below the concentration of 2560 µg/mL exerted negligible cytotoxicity to RAW264.7 cells. The study also examined the expression of QS-related genes, including lasI, lasR, rhlI, rhlR, pqsA, and pqsR in P. aeruginosa and found that the expression of these genes was down-regulated under CA treatment. CONCLUSIONS The study showed that CA could be used as an anti-virulence factor for treating clinical P. aeruginosa infection. SIGNIFICANCE AND IMPACT OF STUDY For the first time, this study took clinically isolated multi-drug resistant P. aeruginosa as the experimental object, and suggested that CA might be an effective antimicrobial compound targeting QS in treating P. aeruginosa infection, thus providing a new therapeutic direction for treating bacterial infection and effectively alleviating bacterial resistance.

Keywords: clinically isolated; quorum sensing; multidrug resistant; chlorogenic acid; aeruginosa

Journal Title: Journal of applied microbiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.