Circular RNAs (circRNAs) play important roles in human cancer progression. Their high stability and tissue specificity make circRNAs important molecular targets for clinical diagnosis, treatment and prognosis. However, the functions… Click to show full abstract
Circular RNAs (circRNAs) play important roles in human cancer progression. Their high stability and tissue specificity make circRNAs important molecular targets for clinical diagnosis, treatment and prognosis. However, the functions and molecular mechanisms of circRNA WHSC1 in endometrial cancer are unknown. CircWHSC1 expression in normal endometrial and endometrial cancer tissues was detected using PCR. Overexpression or knockdown of circWHSC1 in endometrial cancer cell lines HEC‐1B or Ishikawa, respectively, cell function experiments were used to detect the impact of circWHSC1 on endometrial cancer cells. A nude mouse xenograft model was used to detect changes in tumorigenesis of HEC‐1B cells after circWHSC1 overexpression. Bioinformatics and dual luciferase reporter gene technology were used to predict and validate the sponging ability of circWHSC1 on microRNAs. Gene expression changes were detected by using Western blotting. CircWHSC1 expression was increased in endometrial cancer tissues. CircWHSC1 overexpression promoted the proliferation, migration and invasion of endometrial cancer cells and decreased apoptosis. CircWHSC1 knockdown had the opposite effect. CircWHSC1 overexpressed nude mice showed increased tumorigenicity. Bioinformatics predicted that circWHSC1 binds to miR‐646, which was confirmed using luciferase reporter gene assays. High expression of miR‐646 could reverse the effect of circWHSC1 on endometrial cancer cells. Western blotting showed increased or decreased levels of nucleophosmin 1 (NPM1), an miR‐646 downstream target, after circWHSC1 overexpression or knockdown, respectively. CircWHSC1 promotes endometrial cancer development through sponging miR‐646 and targeting NPM1.
               
Click one of the above tabs to view related content.