LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A2AR inhibition in alleviating spatial recognition memory impairment after TBI is associated with improvement in autophagic flux in RSC

Photo by kellysikkema from unsplash

Spatial recognition memory impairment is an important complication after traumatic brain injury (TBI). We previously found that spatial recognition memory impairment can be alleviated in adenosine A2A receptor knockout (A2AR… Click to show full abstract

Spatial recognition memory impairment is an important complication after traumatic brain injury (TBI). We previously found that spatial recognition memory impairment can be alleviated in adenosine A2A receptor knockout (A2AR KO) mice after TBI, but the mechanism remains unclear. In the current study, we used manganese‐enhanced magnetic resonance imaging and the Y‐maze test to determine whether the electrical activity of neurons in the retrosplenial cortex (RSC) was reduced and spatial recognition memory was impaired in wild‐type (WT) mice after moderate TBI. Furthermore, spatial recognition memory was damaged by optogenetically inhibiting the electrical activity of RSC neurons in WT mice. Additionally, the electrical activity of RSC neurons was significantly increased and spatial recognition memory impairment was reduced in A2AR KO mice after moderate TBI. Specific inhibition of A2AR in the ipsilateral RSC alleviated the impairment in spatial recognition memory in WT mice. In addition, A2AR KO improved autophagic flux in the ipsilateral RSC after injury. In primary cultured neurons, activation of A2AR reduced lysosomal‐associated membrane protein 1 and cathepsin D (CTSD) levels, increased phosphorylated protein kinase A and phosphorylated extracellular signal‐regulated kinase 2 levels, reduced transcription factor EB (TFEB) nuclear localization and impaired autophagic flux. These results suggest that the impairment of spatial recognition memory after TBI may be associated with impaired autophagic flux in the RSC and that A2AR activation may reduce lysosomal biogenesis through the PKA/ERK2/TFEB pathway to impair autophagic flux.

Keywords: tbi; recognition memory; rsc; spatial recognition

Journal Title: Journal of Cellular and Molecular Medicine
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.