A crucial mutational mechanism in malignancy is structural variation, in which chromosomal rearrangements alter gene functions that drive cancer progression. Herein, the presence and pattern of structural variations were investigated… Click to show full abstract
A crucial mutational mechanism in malignancy is structural variation, in which chromosomal rearrangements alter gene functions that drive cancer progression. Herein, the presence and pattern of structural variations were investigated in twelve prospectively acquired treatment‐naïve pancreatic cancers specimens obtained via endoscopic ultrasound (EUS). In many patients, this diagnostic biopsy procedure and specimen is the only opportunity to identify somatic clinically relevant actionable alterations that may impact their care and outcome. Specialized mate pair sequencing (MPseq) provided genome‐wide structural variance analysis (SVA) with a view to identifying prognostic markers and possible therapeutic targets. MPseq was successfully performed on all specimens, identifying highly rearranged genomes with complete SVA on all specimens with > 20% tumour content. SVA identified chimeric fusion proteins and potentially immunogenic readthrough transcripts, change of function truncations, gains and losses of key genes linked to tumour progression. Complex localized rearrangements, termed chromoanagenesis, with broad pattern heterogeneity were observed in 10 (83%) specimens, impacting multiple genes with diverse cellular functions that could influence theragnostic evaluation and responsiveness to immunotherapy regimens. This study indicates that genome‐wide MPseq can be successfully performed on very limited clinically EUS obtained specimens for chromosomal rearrangement detection and potential theragnostic targets.
               
Click one of the above tabs to view related content.