LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tissue‐specific expression of insulin receptor isoforms in obesity/type 2 diabetes mouse models

Photo from wikipedia

The two insulin receptor (IR) isoforms IR‐A and IR‐B are responsible for the pleiotropic actions of insulin and insulin‐like growth factors. Consequently, changes in IR isoform expression and in the… Click to show full abstract

The two insulin receptor (IR) isoforms IR‐A and IR‐B are responsible for the pleiotropic actions of insulin and insulin‐like growth factors. Consequently, changes in IR isoform expression and in the bioavailability of their ligands will impact on IR‐mediated functions. Although alteration of IR isoform expression has been linked to insulin resistance, knowledge of IR isoform expression and mechanisms underlying tissue/cell‐type‐specific changes in metabolic disease are lacking. Using mouse models of obesity/diabetes and measuring the mRNA of the IR isoforms and mRNA/protein levels of total IR, we provide a data set of IR isoform expression pattern that documents changes in a tissue‐dependent manner. Combining tissue fractionation and a new in situ mRNA hybridization technology to visualize the IR isoforms at cellular resolution, we explored the mechanism underlying the change in IR isoform expression in perigonadal adipose tissue, which is mainly caused by tissue remodelling, rather than by a shift in IR alternative splicing in a particular cell type, e.g. adipocytes.

Keywords: isoform expression; tissue; insulin receptor; expression; type

Journal Title: Journal of Cellular and Molecular Medicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.