LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MicroRNA-150 and its target ETS-domain transcription factor 1 contribute to inflammation in diabetic photoreceptors.

Photo from wikipedia

Obesity-associated type 2 diabetes (T2D) is on the rise in the United States due to the obesity epidemic, and 60% of T2D patients develop diabetic retinopathy (DR) in their lifetime.… Click to show full abstract

Obesity-associated type 2 diabetes (T2D) is on the rise in the United States due to the obesity epidemic, and 60% of T2D patients develop diabetic retinopathy (DR) in their lifetime. Chronic inflammation is a hallmark of obesity and T2D and a well-accepted major contributor to DR, and retinal photoreceptors are a major source of intraocular inflammation and directly contribute to vascular abnormalities in diabetes. However, how diabetic insults cause photoreceptor inflammation is not well known. In this study, we used a high-fat diet (HFD)-induced T2D mouse model and cultured photoreceptors treated with palmitic acid (PA) to decipher major players that mediate high-fat-induced photoreceptor inflammation. We found that PA-elicited microRNA-150 (miR-150) decreases with a consistent upregulation of ETS-domain transcription factor 1 (Elk1), a downstream target of miR-150, in PA-elicited photoreceptor inflammation. We compared wild-type (WT) and miR-150 null (miR-150-/- ) mice fed with an HFD and found that deletion of miR-150 exacerbated HFD-induced photoreceptor inflammation in conjunction with upregulated ELK1. We further delineated the critical cellular localization of phosphorylated ELK1 at serine 383 (pELK1S383 ) and found that decreased miR-150 exacerbated the T2D-induced inflammation in photoreceptors by upregulating ELK1 and pELK1S383 , and knockdown of ELK1 alleviated PA-elicited photoreceptor inflammation.

Keywords: microrna 150; photoreceptor inflammation; inflammation; ets domain; mir 150

Journal Title: Journal of cellular and molecular medicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.