LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Management of intrauterine adhesions using human amniotic mesenchymal stromal cells to promote endometrial regeneration and repair through Notch signalling.

Photo by nate_dumlao from unsplash

Intrauterine adhesions (IUAs) severely hamper women's reproductive functions. Human amniotic mesenchymal stromal cell (hAMSC) transplantation is effective in treating IUAs. Here, we examined the function of Notch signalling in IUA… Click to show full abstract

Intrauterine adhesions (IUAs) severely hamper women's reproductive functions. Human amniotic mesenchymal stromal cell (hAMSC) transplantation is effective in treating IUAs. Here, we examined the function of Notch signalling in IUA treatment with hAMSC transplantation. Forty-five Sprague-Dawley female rats were randomly divided into the sham operation, IUA, IUA + E2, IUA + hAMSCs and IUA + hAMSCs + E2 groups. After IUA induction in the rats, hAMSCs promoted endometrial regeneration and repair via differentiation into endometrial epithelial cells. In all groups, the expression of key proteins in Notch signalling was detected in the uterus by immunohistochemistry. The results indicated Notch signalling activation in the hAMSCs and hAMSCs + E2 groups. We could also induce hAMSC differentiation to generate endometrial epithelial cells in vitro. Furthermore, the inhibition of Notch signalling using the AdR-dnNotch1 vector suppressed hAMSC differentiation (assessed by epithelial and mesenchymal marker levels), whereas its activation using the AdR-Jagged1 vector increased differentiation. The above findings indicate Notch signalling mediates the differentiation of hAMSCs into endometrial epithelial cells, thus promoting endometrial regeneration and repair; Notch signalling could have an important function in IUA treatment.

Keywords: notch signalling; hamscs; endometrial regeneration; regeneration repair

Journal Title: Journal of cellular and molecular medicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.