Triple‐negative breast cancer (TNBC), a heterogeneous tumour that lacks the expression of oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), is often characterized by… Click to show full abstract
Triple‐negative breast cancer (TNBC), a heterogeneous tumour that lacks the expression of oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), is often characterized by aggressiveness and tends to recur or metastasize. TNBC lacks therapeutic targets compared with other subtypes and is not sensitive to endocrine therapy or targeted therapy except chemotherapy. Therefore, identifying the prognostic characteristics and valid therapeutic targets of TNBC could facilitate early personalized treatment. Due to the rapid development of various technologies, researchers are increasingly focusing on integrating ‘big data’ and biological systems, which is referred to as ‘omics’, as a means of resolving it. Transcriptomics and proteomics analyses play an essential role in exploring prospective biomarkers and potential therapeutic targets for triple‐negative breast cancers, which provides a powerful engine for TNBC’s therapeutic discovery when combined with complementary information. Here, we review the recent progress of TNBC research in transcriptomics and proteomics to identify possible therapeutic goals and improve the survival of patients with triple‐negative breast cancer. Also, researchers may benefit from this article to catalyse further analysis and investigation to decipher the global picture of TNBC cancer.
               
Click one of the above tabs to view related content.