LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly precise breakpoint detection of chromosome balanced translocation in chronic myelogenous leukaemia: Case series

Photo from wikipedia

Chronic myelogenous leukaemia (CML) has a special phenomenon of chromosome translocation, which is called Philadelphia chromosome translocation. However, the detailed connection of this structure is troublesome and expensive to be… Click to show full abstract

Chronic myelogenous leukaemia (CML) has a special phenomenon of chromosome translocation, which is called Philadelphia chromosome translocation. However, the detailed connection of this structure is troublesome and expensive to be identified. Low‐coverage whole genome sequencing (LCWGS) could not only detect the previously unknown chromosomal translocation, but also provide the breakpoint candidate small region (with an accuracy of ±200 bases). Importantly, the sequencing cost of LCWGS is about US$300. Then, with the Sanger DNA sequencing, the precise breakpoint can be determined at a single base level. In our project, with LCWGS, BCR and ABL1 are successfully identified to be disrupted in three CML patients (at chr22:23,632,356 and chr9:133,590,450; chr22:23,633,748 and chr9:133,635,781; chr22: 23,631,831 and chr9:133,598,513, respectively). Due to the reconnection after chromosome breakage, classical fusion gene (BCR::ABL1) was found in bone marrow and peripheral blood. The precise breakpoints were helpful to investigate the pathogenic mechanism of CML and could better guide the classification of CML subtypes. This LCWGS method is universal and can be used to detect all diseases related to chromosome variation, such as solid tumours, liquid tumours and birth defects.

Keywords: chronic myelogenous; translocation; myelogenous leukaemia; chromosome; precise breakpoint

Journal Title: Journal of Cellular and Molecular Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.