LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK‐dependent mechanisms

Photo from wikipedia

Metformin, a well‐known AMPK agonist, has been widely used as the first‐line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in… Click to show full abstract

Metformin, a well‐known AMPK agonist, has been widely used as the first‐line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non‐diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK‐dependent mechanisms in in vitro and/or in vivo models.

Keywords: dependent mechanisms; clinical evidence; ampk dependent; cardiovascular diseases; evidence

Journal Title: Journal of Cellular and Molecular Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.