LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discrete and morphometric traits reveal contrasting patterns and processes in the macroevolutionary history of a clade of scorpions

Photo from wikipedia

Many palaeontological studies have investigated the evolution of entire body plans, generally relying on discrete character‐taxon matrices. In contrast, macroevolutionary studies performed by neontologists have mostly focused on morphometric traits.… Click to show full abstract

Many palaeontological studies have investigated the evolution of entire body plans, generally relying on discrete character‐taxon matrices. In contrast, macroevolutionary studies performed by neontologists have mostly focused on morphometric traits. Although these data types are very different, some studies have suggested that they capture common patterns. Nonetheless, the tests employed to support this claim have not explicitly incorporated a phylogenetic framework and may therefore be susceptible to confounding effects due to the presence of common phylogenetic structure. We address this question using the scorpion genus Brachistosternus Pocock 1893 as case study. We make use of a time‐calibrated multilocus molecular phylogeny, and compile discrete and traditional morphometric data sets, both capturing the overall morphology of the organisms. We find that morphospaces derived from these matrices are significantly different, and that the degree of discordance cannot be replicated by simulations of random character evolution. Moreover, we find strong support for contrasting modes of evolution, with discrete characters being congruent with an ‘early burst’ scenario whereas morphometric traits suggest species‐specific adaptations to have driven morphological evolution. The inferred macroevolutionary dynamics are therefore contingent on the choice of character type. Finally, we confirm that metrics of correlation fail to detect these profound differences given common phylogenetic structure in both data sets, and that methods incorporating a phylogenetic framework and accounting for expected covariance should be favoured.

Keywords: morphometric traits; discrete morphometric; traits reveal; evolution; reveal contrasting; contrasting patterns

Journal Title: Journal of Evolutionary Biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.