LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vitro susceptibility testing for the emerging pathogenic mould Veronaea botryosa and pharmacokinetic parameters of natamycin in white sturgeon (Acipenser transmontanus).

Photo by catherine_avak from unsplash

Systemic phaeohyphomycosis caused by the dematiaceous mould Veronaea botryosa is an important emergent disease affecting captive sturgeons (Acipenser spp.). The disease, colloquially known as "fluid belly," causes morbidity and mortality… Click to show full abstract

Systemic phaeohyphomycosis caused by the dematiaceous mould Veronaea botryosa is an important emergent disease affecting captive sturgeons (Acipenser spp.). The disease, colloquially known as "fluid belly," causes morbidity and mortality in adult animals resulting in significant economic losses to the aquaculture industry. Advancements in therapeutic and prophylactic protocols have been partially hampered by the lack of basic protocols to grow and manipulate the fungus in the laboratory. In this study, microbroth kinetic protocols were established to analyse V. botryosa growth in seven nutrient media at different temperatures. Generated area under the curve (AUC) indicates that potato flake dextrose broth (PFD-B) and Sabouraud dextrose broth (SD-B) incubated at 25°C provided the greatest growth. The generated protocol was then used to test the susceptibility of V. botryosa isolates to natamycin, a macrolide polyene antifungal agent used as a food preservative. SD-B and RPMI with l-glutamine (+RPMI-B) containing different concentrations of natamycin were inoculated with V. botryosa conidia and the generated growth curves were compared using cubic smoothing spline model. The non-inhibitory concentration and minimal inhibitory concentration (MIC; decrease of AUC by 90% compared with control) were determined to be <1 μg/mL and 16 μg/mL of natamycin in SD-B media. To gain an understanding of the tissue distribution of natamycin in white sturgeon, pharmacokinetics was tested. Based on pharmacokinetic parameters determined in this study and targeting a blood concentration >16 μg/mL for 24 h, an intravenous dose >1 g/kg would be needed, making the use of this drug unrealistic. The information presented in this study can be used to investigate susceptibility of pathogenic fungus to antimicrobials and disinfectants as well as support future therapeutic protocols against emerging fungal diseases like fluid belly.

Keywords: botryosa; natamycin white; mould veronaea; susceptibility; white sturgeon; veronaea botryosa

Journal Title: Journal of fish diseases
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.