Copper alloy sheets have been shown to prevent cryptocaryoniasis. Therefore, we studied the potential efficiency of copper alloy mesh (CAM) in aquaculture tanks to prevent cryptocaryoniasis outbreaks. The effectivenesses of… Click to show full abstract
Copper alloy sheets have been shown to prevent cryptocaryoniasis. Therefore, we studied the potential efficiency of copper alloy mesh (CAM) in aquaculture tanks to prevent cryptocaryoniasis outbreaks. The effectivenesses of CAM against the tomont stage of Cryptocaryon irritans and in protecting fish from cryptocaryoniasis were tested both in vitro and in vivo. The mortality rate of C. irritans tomonts increased as the contact time with CAM rose and peaked at 70 min (100% of mortality). Morphological changes were observed such as the shrinking of the protoplasm of the treated tomonts, resulting in a larger gap between the cytoplasm and the cyst wall. Mitochondrial dysfunction due to shrinkage in the inner portion, outer and inner mitochondrial membrane damage and cytoplasmic vacuolation was revealed by ultrastructural analysis. The use of CAM effectively preventing reinfection was also provided. In comparison with group B (infected fish without CAM), both groups A (uninfected fish as a control group) and C (infected fish treated with CAM) had a 100% survival rate until the end of the trial. CAM has the same anticryptocaryoniasis effect as copper alloy sheets but is more advantageous due to its lightweight, reduced labor cost and lower purchase cost. It is noticeable that CAM exposure also prevents the excessive accumulation of copper ions in aquaculture sea water.
               
Click one of the above tabs to view related content.