LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering plants to secrete affinity-tagged pathogen elicitors for deciphering immune receptor complex or inducing enhanced immunity.

Photo from wikipedia

Plant cells mount plenty of pattern-recognition receptors (PRRs) to detect the microbe-associated molecular patterns (MAMPs) from potential microbial pathogens. MAMPs are overrepresented by proteinaneous patterns, such as the flg22 peptide… Click to show full abstract

Plant cells mount plenty of pattern-recognition receptors (PRRs) to detect the microbe-associated molecular patterns (MAMPs) from potential microbial pathogens. MAMPs are overrepresented by proteinaneous patterns, such as the flg22 peptide from bacterial flagellin. Identification of PRR receptor complex components by forward or reverse genetics can be time/labor-consuming, and be confounded by functional redundancies. Here, we present a strategy for identifying PRR complex components by engineering plants to inducibly secrete affinity-tagged proteinaneous MAMPs to the apoplast. The PRR protein complexes bound to self-secreted MAMPs are enriched through affinity purification and dissected by mass spectrometry. As a proof of principle, we could capture the flg22 receptor FLS2 and co-receptor BAK1 using Arabidopsis plants secreting FLAG-tagged flg22 under estradiol induction. Moreover, we identified receptor-like kinases LIK1 and PEPR1/PEPR2 as potential components in the FLS2 receptor complex, which were further validated by the protein-protein interaction assays and reverse genetics approach. Our study showcases a simple way to biochemically identify endogenous PRR complex components without overexpressing the PRR or using chemical cross-linkers, and suggests a possible crosstalk between different immune receptors in plants. A modest dose of estradiol can also be applied to inducing enhanced immunity in engineered plants to both bacterial and fungal pathogens. This article is protected by copyright. All rights reserved.

Keywords: receptor complex; engineering plants; affinity tagged; receptor; secrete affinity

Journal Title: Journal of integrative plant biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.