LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lysozyme inhibits postharvest physiological deterioration of cassava.

Photo by micmurph12 from unsplash

After harvest, cassava (Manihot esculenta Crantz) storage roots undergo rapid postharvest physiological deterioration, producing blue-brown discoloration in the vasculature due to the production of polyphenolics (mainly quinones and coumarins) by… Click to show full abstract

After harvest, cassava (Manihot esculenta Crantz) storage roots undergo rapid postharvest physiological deterioration, producing blue-brown discoloration in the vasculature due to the production of polyphenolics (mainly quinones and coumarins) by enzymes such as polyphenol oxidase (PPO). Here, we report the application of hen egg-white lysozyme (HEWL), a natural PPO inhibitor, in transgenic cassava to repress the symptoms of postharvest physiological deterioration. The HEWL-expressing transgenic plants had lower levels of the two main cassava coumarins tested, scopoletin and scopolin, compared with wild type. HEWL-expressing cassava also showed increased tolerance of oxidative stress. Overall, the lysozyme-PPO system proved to be functional in plants for repressing PPO-mediated commercial product browning.

Keywords: postharvest physiological; physiological deterioration; lysozyme inhibits; cassava

Journal Title: Journal of integrative plant biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.