LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antiviral strategies: What can we learn from natural reservoirs?

Photo from wikipedia

Viruses cause many severe diseases in both plants and animals, urging us to explore new antiviral strategies. In their natural reservoirs, viruses live and replicate while causing mild or no… Click to show full abstract

Viruses cause many severe diseases in both plants and animals, urging us to explore new antiviral strategies. In their natural reservoirs, viruses live and replicate while causing mild or no symptoms. Some animals, such as bats, are the predicted natural reservoir of multiple viruses, indicating that they possess broad-spectrum antiviral capabilities. Mechanisms of host defenses against viruses are generally studied independently in plants and animals. In this article, we speculate that some antiviral strategies of natural reservoirs are conserved between kingdoms. To verify this hypothesis, we created null mutants of 10-formyltetrahydrofolate synthetase (AtTHFS), an Arabidopsis thaliana homolog of methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (MTHFD1), which encodes a positive regulator of viral replication in bats. We found that disruption of AtTHFS enhanced plant resistance to three different types of plant viruses, including the tomato spotted wilt virus (TSWV), the cucumber mosaic virus (CMV) and the beet severe curly top virus (BSCTV). These results demonstrate a novel antiviral strategy for plant breeding. We further discuss the approaches used to identify and study natural reservoirs of plant viruses, especially those hosting many viruses, and highlight the possibility of discovering new antiviral strategies from them for plant molecular breeding and antiviral therapy. This article is protected by copyright. All rights reserved.

Keywords: strategies learn; antiviral strategies; natural reservoirs; learn natural; plant; virus

Journal Title: Journal of integrative plant biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.