LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Real-time monitoring of carbonation of hardened cement pastes using Raman microscopy.

Photo from wikipedia

This study investigated the feasibility of Raman microscopy for monitoring early surface carbonation of hardened cement pastes in real time for up to 7 d. Samples were exposed to natural… Click to show full abstract

This study investigated the feasibility of Raman microscopy for monitoring early surface carbonation of hardened cement pastes in real time for up to 7 d. Samples were exposed to natural carbonation (440 ppm CO2 ) and accelerated carbonation (4% CO2 ), and the evolution of calcium carbonate (CaCO3 ) polymorphs, portlandite, ettringite, C-S-H gel and unreacted cement particles was followed. Results showed that calcite is the main polymorph formed under both natural and accelerated carbonation. Under accelerated carbonation, the formation of calcite on the sample surface completed within 1 d whereas under natural carbonation, the formation of calcite is expected to continue beyond 7d. The contents of portlandite and ettringite decreased rapidly under accelerated carbonation but much more gradually under natural carbonation. However, calcium silicate minerals in unreacted cement particles remained unchanged throughout the carbonation processes. Overall, this study demonstrated that Raman microscopy is a valuable tool for non-destructive real-time imaging of surface carbonation in cement-based materials. This article is protected by copyright. All rights reserved.

Keywords: cement; raman microscopy; real time; carbonation; microscopy

Journal Title: Journal of microscopy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.