LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ProSAAS‐derived peptides are regulated by cocaine and are required for sensitization to the locomotor effects of cocaine

Photo by traumhaendler from unsplash

To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal… Click to show full abstract

To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for 7 days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration. Three peptides in the nucleus accumbens and seven peptides in the ventral tegmental area were significantly decreased in cocaine‐treated mice. Five of these ten peptides are derived from proSAAS, a secretory pathway protein and neuropeptide precursor. To investigate whether proSAAS peptides contribute to the physiological effects of psychostimulants, we examined acute responses to cocaine and amphetamine in the open field with wild‐type (WT) and proSAAS knockout (KO) mice. Locomotion was stimulated more robustly in the WT compared to mutant mice for both psychostimulants. Behavioral sensitization to amphetamine was not maintained in proSAAS KO mice and these mutants failed to sensitize to cocaine. To determine whether the rewarding effects of cocaine were altered, mice were tested in conditioned place preference (CPP). Both WT and proSAAS KO mice showed dose‐dependent CPP to cocaine that was not distinguished by genotype. Taken together, these results suggest that proSAAS‐derived peptides contribute differentially to the behavioral sensitization to psychostimulants, while the rewarding effects of cocaine appear intact in mice lacking proSAAS.

Keywords: prosaas; prosaas derived; regulated cocaine; cocaine; effects cocaine; sensitization

Journal Title: Journal of Neurochemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.