LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Melatonin protects against developmental PBDE-47 neurotoxicity by targeting the AMPK/mitophagy axis.

The neurotoxicity of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) is closely linked to mitochondrial abnormalities while mitophagy is vital for mitochondrial homeostasis. However, whether PBDE-47 disrupts mitophagy contributing to impaired neurodevelopment remain elusive.… Click to show full abstract

The neurotoxicity of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) is closely linked to mitochondrial abnormalities while mitophagy is vital for mitochondrial homeostasis. However, whether PBDE-47 disrupts mitophagy contributing to impaired neurodevelopment remain elusive. Here, this study showed that neonatal PBDE-47 exposure caused learning and memory deficits in adult rats, accompanied with striatal mitochondrial abnormalities, neuronal apoptosis and the resultant neuronal loss. Mechanistically, PBDE-47 suppressed PINK1/Parkin-mediated mitophagy induction and degradation, inducing mitophagosome accumulation and mitochondrial dysfunction in vivo and in vitro. Additionally, stimulation of mitophagy by adenovirus-mediated Parkin or Autophagy-related protein 7 (Atg7) overexpression aggravated PBDE-47-induced mitophagosome accumulation, mitochondrial dysfunction, neuronal apoptosis and death. Conversely, suppression of mitophagy by the siRNA knockdown of Atg7 rescued PBDE-47-induced detrimental consequences. Importantly, melatonin, a hormone secreted rhythmically by the pineal, improved PBDE-47-caused neurotoxicity via preventing neuronal apoptosis and loss by restoring mitophagic activity and mitochondrial function. These neuroprotective effects of melatonin depended on activation of the AMP-activated protein kinase (AMPK)/unc-51 like autophagy activating kinase 1 (ULK1) signaling. Collectively, these data indicate that PBDE-47 impairs mitophagy to perturb mitochondrial homeostasis, thus triggering apoptosis, leading to neuronal loss and consequent neurobehavioral deficits. Manipulation of the AMPK-mitophagy axis via melatonin could be a novel therapeutic strategy against developmental PBDE-47 neurotoxicity. This article is protected by copyright. All rights reserved.

Keywords: mitophagy axis; pbde; ampk mitophagy; neurotoxicity; melatonin

Journal Title: Journal of pineal research
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.