LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Consequences of warming and acidification for the temperate articulated coralline alga, Calliarthron tuberculosum (Florideophyceae, Rhodophyta)

Photo from wikipedia

Global climate changes, such as warming and ocean acidification (OA), are likely to negatively impact calcifying marine taxa. Abundant and ecologically important coralline algae may be particularly susceptible to OA;… Click to show full abstract

Global climate changes, such as warming and ocean acidification (OA), are likely to negatively impact calcifying marine taxa. Abundant and ecologically important coralline algae may be particularly susceptible to OA; however, multi‐stressor studies and those on articulated morphotypes are lacking. Here, we use field observations and laboratory experiments to elucidate the impacts of warming and acidification on growth, calcification, mineralogy, and photophysiology of the temperate articulated coralline alga, Calliarthron tuberculosum. We conducted a 4‐week fully factorial mesocosm experiment exposing individuals from a southern CA kelp forest to current and future temperature and pH/pCO2 conditions (+2°C, −0.5 pH units). Calcification was reduced under warming (70%) and further reduced by high pCO2 or high pCO2 x warming (~150%). Growth (change in linear extension and surface area) was reduced by warming (40% and 50%, respectively), high pCO2 (20% and 40%, respectively), and high pCO2 x warming (50% and 75%, respectively). The maximum photosynthetic rate (Pmax) increased by 100% under high pCO2 conditions, but we did not detect an effect of pCO2 or warming on photosynthetic efficiency (α). We also did not detect the effect of warming or pCO2 on mineralogy. However, variation in Mg incorporation in cell walls of different cell types (i.e., higher mol % Mg in cortical vs. medullary) was documented for the first time in this species. These results support findings from a growing body of literature suggesting that coralline algae are often more negatively impacted by warming than OA, with the potential for antagonistic effects when factors are combined.

Keywords: mineralogy; temperate articulated; pco2; high pco2; warming acidification

Journal Title: Journal of Phycology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.