LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impaired dental implant osseointegration in rat with streptozotocin-induced diabetes.

Photo by elisa_ventur from unsplash

OBJECTIVE Few studies have reported on the impact of oxidative stress on the dental implant failure. The aim of this study was to investigate the impact of hyperglycemia-induced oxidative stress… Click to show full abstract

OBJECTIVE Few studies have reported on the impact of oxidative stress on the dental implant failure. The aim of this study was to investigate the impact of hyperglycemia-induced oxidative stress on dental implant osseointegration in diabetes mellitus (DM). METHODS Acid-treated titanium implants were bilaterally placed in the maxillary alveolar ridge of streptozotocin-induced diabetic (DM group) and control rats after extraction of first molars. Histological analysis and micro-push-out test were performed 4 weeks after surgery. Oxidative stress and osteogenic markers in the surrounding bone were quantified by real-time polymerase chain reaction. In the in vitro study, rat bone marrow-derived mesenchymal stem cells (BMMSCs) were cultured on acid-treated titanium discs in a high-glucose (HG) or normal environment. Intracellular reactive oxygen species (ROS), cell proliferation, alkaline phosphatase (ALP) activity, and extracellular calcification were evaluated following antioxidant treatment with N-acetyl-L-cysteine (NAC). RESULTS The implant survival rate was 92.9% and 75.0% in control and DM group, respectively. Bone-implant contact and push-out loads were significantly lower in the DM group. Expression of superoxide dismutase 1 at the mRNA level and on immunohistochemistry was significantly lower in the DM group. In vitro experiments revealed that the HG condition significantly increased ROS expression and suppressed the proliferation and extracellular calcification of BMMSCs, while NAC treatment significantly restored ROS expression, cell proliferation, and calcification. The ALP activity of both groups was not significantly different. CONCLUSION In diabetes, high-glucose-induced oxidative stress downregulates proliferation and calcification of BMMSCs, impairing osseointegration and leading to implant failure.

Keywords: streptozotocin induced; osseointegration; oxidative stress; dental implant; implant osseointegration

Journal Title: Journal of periodontal research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.