LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks

Photo by john_cameron from unsplash

Ticks are obligatorily hematophagous but spend the majority of their lives off host in an unfed state where they must resist starvation between bouts of blood feeding. Survival during these… Click to show full abstract

Ticks are obligatorily hematophagous but spend the majority of their lives off host in an unfed state where they must resist starvation between bouts of blood feeding. Survival during these extended off‐host periods is critical to the success of these arthropods as vectors of disease; however, little is known about the underlying physiological and molecular mechanisms of starvation tolerance in ticks. We examined the bioenergetic, transcriptomic and behavioural changes of female American dog ticks, Dermacentor variabilis, throughout starvation (up to nine months post‐bloodmeal). As starvation progressed, ticks utilized glycogen and lipid, and later protein as energy reserves with proteolysis and autophagy facilitating the mobilization of endogenous nutrients. The metabolic rate of the ticks was expectedly low, but showed a slight increase as starvation progressed possibly reflecting the upregulation of several energetically costly processes such as transcription/translation and/or increases in host‐seeking behaviours. Starved ticks had higher activity levels, increased questing behaviour and augmented expression of genes related to chemosensing, immunity and salivary gland proteins. The shifts in gene expression and associated behavioural and physiological processes are critical to allowing these parasites to exploit their ecological niche as extreme sit‐and‐wait parasites. The overall responses of ticks to starvation were similar to other blood‐feeding arthropods, but we identified unique responses that could have epidemiological and ecological significance for ticks as ectoparasites that must be tolerant of sporadic feeding.

Keywords: starvation; transcriptomic shifts; behavioural physiological; progressive behavioural; physiological transcriptomic; shifts course

Journal Title: Molecular Ecology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.