LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The maintenance of polymorphism in an ancient social supergene.

Photo by kangterbang from unsplash

Supergenes, regions of the genome with suppressed recombination between sets of functional mutations, contribute to the evolution of complex phenotypes in diverse systems. Excluding sex chromosomes, most supergenes discovered so… Click to show full abstract

Supergenes, regions of the genome with suppressed recombination between sets of functional mutations, contribute to the evolution of complex phenotypes in diverse systems. Excluding sex chromosomes, most supergenes discovered so far appear to be young, being found in one species or a few closely related species. Here, we investigate how a chromosome harboring an ancient supergene has evolved over about 30 Ma. The Formica supergene underlies variation in colony queen number in at least five species. We expand previous analyses of sequence divergence on this chromosome to encompass about 90 species spanning the Formica phylogeny. Within the non-recombining region, the gene knockout contains 22 single nucleotide polymorphisms (SNPs) that are consistently differentiated between two alternative supergene haplotypes in divergent European Formica species, and we show that these same SNPs are present in most Formica clades. In these clades, including an early diverging Nearctic Formica clade, individuals with alternative genotypes at knockout also have higher differentiation in other portions of this chromosome. We identify hotspots of SNPs along this chromosome that are present in multiple Formica clades to detect genes that may have contributed to the emergence and maintenance of the genetic polymorphism. Finally, we infer three gene duplications on one haplotype, based on apparent heterozygosity within these genes in the genomes of haploid males. This study strengthens the evidence that this supergene originated early in the evolution of Formica and that just a few loci in this large region of suppressed recombination retain strongly differentiated alleles across contemporary Formica lineages.

Keywords: supergene; maintenance polymorphism; formica; polymorphism ancient

Journal Title: Molecular ecology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.