LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phylogenetic conservatism of mycoparasitism and its contribution to pathogen antagonism

Photo by cdc from unsplash

Closely related species are expected to have similar functional traits due to shared ancestry and phylogenetic inertia. However, few tests of this hypothesis are available for plant‐associated fungal symbionts. Fungal… Click to show full abstract

Closely related species are expected to have similar functional traits due to shared ancestry and phylogenetic inertia. However, few tests of this hypothesis are available for plant‐associated fungal symbionts. Fungal leaf endophytes occur in all land plants and can protect their host plant from disease by a variety of mechanisms, including by parasitizing pathogens (e.g., mycoparasitism). Here, we tested whether phylogenetic relatedness among species of Cladosporium, a widespread genus that includes mycoparasitic species, predicts the effect of this endophyte on the severity of leaf rust disease. First, we used congruence among different marker sequences (i.e., genealogical concordance phylogenetic species recognition criterion) to delimit species of Cladosporium. Next, in a controlled experiment, we quantified both mycoparasitism and disease modification for the selected Cladosporium species. We identified 17 species of Cladosporium; all the species reduced rust disease severity in our experiment. Cladosporium phylogeny was a significant predictor of mycoparasitism. However, we did not observe a phylogenetic effect on disease severity overall, indicating that other mechanism/s operating independently of shared ancestry also contributed to endophyte effects on disease severity. Indeed, a second experiment showed that Cladosporium endophyte exudates (no live organism) from divergent species groups equally reduced disease severity. Our results reveal that multiple mechanisms contribute to the protective effects of an endophyte against a plant pathogen, but not all traits underlying these mechanisms are phylogenetically conserved.

Keywords: pathogen; disease; mycoparasitism; disease severity; species cladosporium

Journal Title: Molecular Ecology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.