LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Future-proofing the koala: synergising genomic and environmental data for effective species management.

Climatic and evolutionary processes are inextricably linked to conservation. Avoiding extinction in rapidly changing environments often depends upon a species' capacity to adapt in the face of extreme selective pressures.… Click to show full abstract

Climatic and evolutionary processes are inextricably linked to conservation. Avoiding extinction in rapidly changing environments often depends upon a species' capacity to adapt in the face of extreme selective pressures. Here, we employed exon capture and high-throughput next-generation sequencing to investigate the mechanisms underlying population structure and adaptive genetic variation in the koala (Phascolarctos cinereus), an iconic Australian marsupial that represents a unique conservation challenge because it is not uniformly threatened across its range. An examination of 250 specimens representing 91 wild source locations revealed that five major genetic clusters currently exist on a continental scale. The initial divergence of these clusters appears to have been concordant with the Mid-Brunhes Transition (∼ 430-300 kya), a major climatic reorganization that increased the amplitude of Pleistocene glacial-interglacial cycles. While signatures of polygenic selection and environmental adaptation were detected, strong evidence for repeated, climate-associated range contractions and demographic bottleneck events suggests that geographically isolated refugia may have played a more significant role in the survival of the koala through the Pleistocene glaciation than in situ adaptation. Consequently, the conservation of genome-wide genetic variation must be aligned with the protection of core koala habitat to increase the resilience of threatened populations to accelerating anthropogenic threats. Finally, we propose that the five major genetic clusters identified in this study should be accounted for in future koala conservation efforts (e.g. guiding translocations), as existing management divisions in the states of Queensland and New South Wales do not reflect historic or contemporary population structure.

Keywords: proofing koala; koala synergising; synergising genomic; future proofing; management; genomic environmental

Journal Title: Molecular ecology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.