LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genomic architecture underlying morphological and physiological adaptation to high elevation in a songbird

Photo from wikipedia

Organisms often acquire physiological and morphological modifications to conquer ecological challenges when colonizing new environments which lead to their adaptive evolution. However, deciphering the genomic mechanism of ecological adaptation is… Click to show full abstract

Organisms often acquire physiological and morphological modifications to conquer ecological challenges when colonizing new environments which lead to their adaptive evolution. However, deciphering the genomic mechanism of ecological adaptation is difficult because ecological environments are often too complex for straightforward interpretation. Thus, we examined the adaptation of a widespread songbird—the rufous‐capped babbler (Cyanoderma ruficeps)—to a relatively simple system: distinct environments across elevational gradients on the mountainous island of Taiwan. We focused on the genomic sequences of 43 birds from five populations to show that the Taiwan group split from its sister group in mainland China around 1–2 million years ago (Ma) and colonized the montane habitats of Taiwan at least twice around 0.03–0.22 Ma. The montane and lowland Taiwan populations diverged with gene flow between them, suggesting strong selection associated with different elevations. We found that the montane babblers had smaller beaks than the lowland ones, consistent with Allen's rule, and identified candidate genes—COL9A1 and SOX11—underlying the beak size changes. We also found that altitudinally divergent mutations were mostly located in noncoding regions and tended to accumulate in chromosomal inversions and autosomes. The altitudinally divergent mutations might regulate genes related to haematopoietic, metabolic, immune, auditory and vision functions, as well as cerebrum morphology and plumage development. The results reveal the genomic bases of morphological and physiological adaptation in this species to the low temperature, hypoxia and high UV light environment at high elevation. These findings improve our understanding of how ecological adaptation drives population divergence from the perspective of genomic architecture.

Keywords: songbird; adaptation; genomic architecture; physiological adaptation; morphological physiological; high elevation

Journal Title: Molecular Ecology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.