LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N‐oxide

Photo from wikipedia

Trimethylamine (TMA) and trimethylamine N‐oxide (TMAO) are widespread in the ocean and are important nitrogen source for bacteria. TMA monooxygenase (Tmm), a bacterial flavin‐containing monooxygenase (FMO), is found widespread in… Click to show full abstract

Trimethylamine (TMA) and trimethylamine N‐oxide (TMAO) are widespread in the ocean and are important nitrogen source for bacteria. TMA monooxygenase (Tmm), a bacterial flavin‐containing monooxygenase (FMO), is found widespread in marine bacteria and is responsible for converting TMA to TMAO. However, the molecular mechanism of TMA oxygenation by Tmm has not been explained. Here, we determined the crystal structures of two reaction intermediates of a marine bacterial Tmm (RnTmm) and elucidated the catalytic mechanism of TMA oxidation by RnTmm. The catalytic process of Tmm consists of a reductive half‐reaction and an oxidative half‐reaction. In the reductive half‐reaction, FAD is reduced and a C4a‐hydroperoxyflavin intermediate forms. In the oxidative half‐reaction, this intermediate attracts TMA through electronic interactions. After TMA binding, NADP+ bends and interacts with D317, shutting off the entrance to create a protected micro‐environment for catalysis and exposing C4a‐hydroperoxyflavin to TMA for oxidation. Sequence analysis suggests that the proposed catalytic mechanism is common for bacterial Tmms. These findings reveal the catalytic process of TMA oxidation by marine bacterial Tmm and first show that NADP+ undergoes a conformational change in the oxidative half‐reaction of FMOs.

Keywords: oxidation; mechanism; tmm; half reaction; trimethylamine

Journal Title: Molecular Microbiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.