LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptome analyses unveiled differential regulation of AGO and DCL genes by pepino mosaic virus strains

Photo by edouarddognin from unsplash

Abstract Pepino mosaic virus (PepMV) is a single‐stranded (ss), positive‐sense (+) RNA potexvirus that affects tomato crops worldwide. We have described an in planta antagonistic interaction between PepMV isolates of… Click to show full abstract

Abstract Pepino mosaic virus (PepMV) is a single‐stranded (ss), positive‐sense (+) RNA potexvirus that affects tomato crops worldwide. We have described an in planta antagonistic interaction between PepMV isolates of two strains in which the EU isolate represses the accumulation of the CH2 isolate during mixed infections. Reports describing transcriptomic responses to mixed infections are scant. We carried out transcriptomic analyses of tomato plants singly and mixed‐infected with two PepMV isolates of both strains. Comparison of the transcriptomes of singly infected plants showed that deeper transcriptomic alterations occurred at early infection times, and also that each of the viral strains modulated the host transcriptome differentially. Mixed infections caused transcriptomic alterations similar to those for the sum of single infections at early infection times, but clearly differing at later times postinfection. We next tested the hypothesis that PepMV‐EU, in either single or mixed infections, deregulates host gene expression differentially so that virus accumulation of both strains gets repressed. That seemed to be the case for the genes AGO1a, DCL2d, AGO2a, and DCL2b, which are involved in the antiviral silencing pathway and were upregulated by PepMV‐EU but not by PepMV‐CH2 at early times postinfection. The pattern of AGO2a expression was validated by reverse transcription‐quantitative PCR in tomato and Nicotiana benthamiana plants. Using an N. benthamiana ago2 mutant line, we showed that AGO2 indeed plays an important role in the antiviral defence against PepMV, but it is not the primary determinant of the outcome of the antagonistic interaction between the two PepMV strains.

Keywords: transcriptome analyses; pepino mosaic; mixed infections; mosaic virus; pepmv

Journal Title: Molecular Plant Pathology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.