Chronic hyperammonaemia and inflammation synergistically induce neurological impairment, including motor incoordination, in hepatic encephalopathy. Hyperammonaemic rats show neuroinflammation in the cerebellum which enhances GABAergic neurotransmission leading to motor incoordination. We… Click to show full abstract
Chronic hyperammonaemia and inflammation synergistically induce neurological impairment, including motor incoordination, in hepatic encephalopathy. Hyperammonaemic rats show neuroinflammation in the cerebellum which enhances GABAergic neurotransmission leading to motor incoordination. We aimed to identify underlying mechanisms. The aims were (1) to assess if S1PR2 is involved in microglial and astrocytic activation in the cerebellum of hyperammonaemic rats; (2) to identify pathways by which enhanced S1PR2 activation induces neuroinflammation and alters neurotransmission; (3) to assess if blocking S1PR2 reduces neuroinflammation and restores motor coordination in hyperammonaemic rats.
               
Click one of the above tabs to view related content.