LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental functional shift-induced osteoarthritis-like changes at the TMJ and altered integrin expression in a rat model.

Photo from wikipedia

Mandibular deviation affects the biomechanical environment of the temporomandibular joint (TMJ) and causes thinning of cartilage on the deviated side. We aimed to evaluate, using a rat model, the effect… Click to show full abstract

Mandibular deviation affects the biomechanical environment of the temporomandibular joint (TMJ) and causes thinning of cartilage on the deviated side. We aimed to evaluate, using a rat model, the effect of mandibular functional deviation on the TMJ in relation to the functional roles of integrin β family members. The effects of experimental functional deviation on the TMJ of 6-week-old Sprague-Dawley female rats, randomly assigned to control (n = 42) and experimental groups (n = 42), were evaluated at 3 days and 1, 2, 4, and 8 weeks by histological staining, immunofluorescence, real-time quantitative polymerase chain reaction, and micro-computed tomography. The results showed that the experimental functional shift changed the shape of condyles, thinned the cartilage, and increased the proportion of the hypertrophic layer on the deviated sides of condyles. In addition, the extracellular matrix of the condyle cartilage exhibited degradation at 1 week and subchondral trabecular bone was lost at 4 and 8 weeks. Osteoarthritis (OA)-like changes occurred in the left and right condyles of rats in the experimental group and were aggravated over time. Integrin β family expression, especially integrin β2 , was altered from week 1, possibly related to the OA-like changes. These data may provide insight into the onset of TMJ OA.

Keywords: functional shift; rat model; like changes; experimental functional; osteoarthritis like; tmj

Journal Title: Annals of the New York Academy of Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.