LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-cell Transcriptomics Dissects Premalignant Progression in Proliferative Verrucous Leukoplakia.

Photo from wikipedia

OBJECTIVE Proliferative verrucous leukoplakia (PVL) is characterized by a spectrum of clinicopathological features and a high risk of malignant transformation. In this study, we aimed to delineate the dynamic changes… Click to show full abstract

OBJECTIVE Proliferative verrucous leukoplakia (PVL) is characterized by a spectrum of clinicopathological features and a high risk of malignant transformation. In this study, we aimed to delineate the dynamic changes in molecular signature during PVL progression and identify the potential cell subtypes that play a key role in the premalignant evolution of PVL. METHODS We performed single-cell RNA sequencing on three biopsy samples from a large PVL lesion. These samples exhibited a histopathological continuum of PVL progression. RESULTS By analyzing the transcriptome profiles of 27,611 cells from these samples, we identified ten major cell lineages and revealed that cellular remodeling occurred during the progression of PVL lesions, including epithelial, stromal, and immune cells. Epithelial cells are shifted to tumorigenic states and secretory patterns at the premalignant stage. Immune cells showed growing immunosuppressive phenotypes during PVL progression. Remarkably, two novel cell subtypes INSR+ endothelial cells and ASPN+ fibroblasts, were discovered and may play vital roles in microenvironment remodeling, such as angiogenesis and stromal fibrosis, which are closely involved in malignant transformation. CONCLUSION Our work is the first to depict the cellular landscape of PVL and speculate that disease progression may be driven by functional remodeling of multiple cell subtypes.

Keywords: cell; proliferative verrucous; progression; single cell; pvl; verrucous leukoplakia

Journal Title: Oral diseases
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.