LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alteration of myoepithelial cells during botulinum toxin type A-inhibited salivary secretion.

OBJECTIVE Intraglandular injection of botulinum toxin type A (BoNT/A) effectively treats sialorrhea. Myoepithelial cells (MECs) are essential for salivary secretion. The role of MECs in BoNT/A-inhibited salivary secretion and its… Click to show full abstract

OBJECTIVE Intraglandular injection of botulinum toxin type A (BoNT/A) effectively treats sialorrhea. Myoepithelial cells (MECs) are essential for salivary secretion. The role of MECs in BoNT/A-inhibited salivary secretion and its underlying mechanisms remain unknown. MATERIALS AND METHODS BoNT/A was injected into rat submandibular glands (SMGs). At 1, 2, 4, 8, and 12 weeks postinjection, salivary flow rate of SMGs was measured. Electron microscopy, immunohistochemistry, immunofluorescence, and western blot analysis were used to detect morphological and functional changes of MECs and chemical denervation in SMGs. RESULTS BoNT/A temporarily decreased salivary secretion in rat SMGs and this inhibitory effect lasted 4 weeks. During the inhibitory period, MECs atrophied and expressed reduced α-smooth muscle actin (α-SMA), vimentin, and phosphorylated myosin light chain 2 (p-MLC2), suggesting that BoNT/A attenuated MEC contractility. Furthermore, BoNT/A cleaved synaptosome-associated protein 25 (SNAP-25) and decreased the expression and activity of acetylcholinesterase (AChE), indicating that BoNT/A induced chemical parasympathetic denervation of SMGs by cleaving SNAP-25. CONCLUSIONS BoNT/A temporarily caused MEC atrophy and decreased MEC contractility in rat SMGs, which contributed to reversible inhibition of salivary secretion. The underlying mechanisms involved temporary parasympathetic denervation caused by SNAP-25 cleavage. These findings provide new insights into the mechanisms of BoNT/A-inhibited salivary secretion.

Keywords: salivary secretion; inhibited salivary; myoepithelial cells; secretion; botulinum toxin; toxin type

Journal Title: Oral diseases
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.