Doubled haploid (DH) technology substantially accelerates crop breeding process. Wheat haploid production through interspecific hybridization requires embryo rescue and is dependent on genetic background. In vivo haploid induction (HI) in… Click to show full abstract
Doubled haploid (DH) technology substantially accelerates crop breeding process. Wheat haploid production through interspecific hybridization requires embryo rescue and is dependent on genetic background. In vivo haploid induction (HI) in maize has been widely used and demonstrated to be independent of genetic background and to produce haploids efficiently. Recent studies revealed that loss of function of the gene MTL/ZmPLA1/NLD triggers HI (Gilles et al., 2017; Kelliher et al., 2017; Liu et al., 2017). In addition to producing homozygous DH lines, HI system has also been used for gene editing in different genetic backgrounds without introducing the genome of the male parent (Kelliher et al., 2019; Wang et al., 2019). This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.