LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Upgrading the genome of an elite japonica rice variety Kongyu 131 for lodging resistance improvement

Photo from wikipedia

Summary Developing a new rice variety requires tremendous efforts and years of input. To improve the defect traits of the excellent varieties becomes more cost and time efficient than breeding… Click to show full abstract

Summary Developing a new rice variety requires tremendous efforts and years of input. To improve the defect traits of the excellent varieties becomes more cost and time efficient than breeding a completely new variety. Kongyu 131 is a high‐performing japonica variety with early maturity, high yield, wide adaptability and cold resistance, but the poor‐lodging resistance hinders the industrial production of Kongyu 131 in the Northeastern China. In this study, we attempted to improve the lodging resistance of Kongyu 131 from perspectives of both gene and trait. On the one hand, by QTL analysis and fine mapping we discovered the candidate gene loci. The following CRISPR/Cas9 and transgenic complementation study confirmed that Sd1 dominated the lodging resistance and favourable allele was mined for precise introduction and improvement. On the other hand, the Sd1 allelic variant was identified in Kongyu 131 by sequence alignment, then introduced another excellent allelic variation by backcrossing. Then, the two new resulting Kongyu 131 went through the field evaluation under different environments, planting densities and nitrogen fertilizer conditions. The results showed that the plant height of upgraded Kongyu 131 was 17%–26% lower than Kongyu 131 without penalty in yield. This study demonstrated a precise and targeted way to update the rice genome and upgrade the elite rice varieties by improving only a few gene defects from the perspective of breeding.

Keywords: lodging resistance; rice variety; resistance; kongyu 131

Journal Title: Plant Biotechnology Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.