LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insights into Light‐driven DNA Repair by Photolyases: Challenges and Opportunities for Electronic Structure Theory

Photo by nci from unsplash

Ultraviolet radiation causes two of the most abundant mutagenic and cytotoxic DNA lesions: cyclobutane pyrimidine dimers and 6‐4 photoproducts. (6‐4) Photolyases are light‐activated enzymes that selectively bind to DNA and… Click to show full abstract

Ultraviolet radiation causes two of the most abundant mutagenic and cytotoxic DNA lesions: cyclobutane pyrimidine dimers and 6‐4 photoproducts. (6‐4) Photolyases are light‐activated enzymes that selectively bind to DNA and trigger repair of mutagenic 6‐4 photoproducts via photoinduced electron transfer from flavin adenine dinucleotide anion (FADH−) to the lesion triggering repair. This review provides an overview of the sequential steps of the repair process, that is light absorption and resonance energy transfer, photoinduced electron transfer and electron‐induced splitting mechanisms, with an emphasis on the role of theory and computation. In addition, theoretical calculations and physical properties that can be used to classify specific mechanism are discussed in an effort to trace the fundamental aspects of each individual step and assist the interpretation of experimental data. The current challenges and suggested future directions are outlined for each step, concluding with a view on the future.

Keywords: theory; dna; driven dna; insights light; light driven; repair

Journal Title: Photochemistry and Photobiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.