LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative Effects of Pigmentation on the Re‐absorption of Chlorophyll a Fluorescence and Energy Partitioning in Leaves

Photo by mbrunacr from unsplash

This study comparatively examined spectroscopic features, photosynthetic parameters and energy partitioning in plants of Fittonia albivenis cv. Agyroneura and Fittonia albivenis cv. Verschaffeltii with different pigmentation. Fittonia albivenis cv. Verschaffeltii,… Click to show full abstract

This study comparatively examined spectroscopic features, photosynthetic parameters and energy partitioning in plants of Fittonia albivenis cv. Agyroneura and Fittonia albivenis cv. Verschaffeltii with different pigmentation. Fittonia albivenis cv. Verschaffeltii, rich in anthocyanins, presented lower values than the green variety (cv. Agyroneura) for several parameters: the ratio chlorophyll a/b, the carotenoid content, the heat dissipation by nonphotochemical quenching (NPQ) and the energy‐dependent component of the quantum yield of NPQ. Additionally, the red plant displayed higher resistance to water shortage. The spectral distribution of the chlorophyll a fluorescence, free from distortions due to light reabsorption processes, was obtained for both varieties by application of a physical model previously developed in our group. From this modeling, a higher ratio photosystem II/photosystem I was inferred for the red variety, in agreement with the screening effect of anthocyanins. From a thorough analysis of the fluorescence, the different operating strategies adopted by these plants with dissimilar pigmentation could be elucidated. These strategies were related to the photosystem stoichiometry, the distribution of the absorbed energy and the dissipation of heat under increasing light intensities.

Keywords: chlorophyll fluorescence; energy partitioning; pigmentation; energy

Journal Title: Photochemistry and Photobiology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.