Humic substances, a component of terrestrial dissolved organic matter (tDOM), contribute to dissolved organic matter (DOM) and chromophoric DOM (CDOM) in coastal waters, and have significant impacts on biogeochemistry. There… Click to show full abstract
Humic substances, a component of terrestrial dissolved organic matter (tDOM), contribute to dissolved organic matter (DOM) and chromophoric DOM (CDOM) in coastal waters, and have significant impacts on biogeochemistry. There are concerns in recent years over browning effects in surface waters due to increasing tDOM inputs, and their negative impacts on aquatic ecosystems, but relatively little work has been published on estuaries and coastal waters. Photodegradation could be a significant sink for tDOM in coastal environments, but the rates and efficiencies are poorly constrained. We conducted large‐scale DOM photodegradation experiments in mesocosms amended with humic substances and nutrients in the Gulf of Finland to investigate the potential of photochemistry to remove added tDOM and the interactions of DOM photochemistry with eutrophication. The added tDOM was photodegraded rapidly, as CDOM absorption decreased and spectral slopes increased with increasing photons absorbed in laboratory experiments. The in situ DOM optical properties became similar among the control, humic‐ and humic+nutrients‐amended mesocosm samples toward the end of the amendment experiment, indicating degradation of the excess CDOM/DOM through processes including photodegradation. Nutrient additions did not significantly influence the effects of added humic substances on CDOM optical property changes, but induced changes in DOM removal.
               
Click one of the above tabs to view related content.