LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Does size really matter? A comparative study on floral traits in orchids with two different pollination strategies.

Photo from wikipedia

The lock and key hypothesis assumes that male and female genitalia match in a unique system to prevent interspecific crosses. This hypothesis is largely investigated in animals, while there is… Click to show full abstract

The lock and key hypothesis assumes that male and female genitalia match in a unique system to prevent interspecific crosses. This hypothesis is largely investigated in animals, while there is a distinct lack of studies on plants. Nevertheless, we expect the lock and key hypothesis could apply to plants with complex floral morphologies, such as orchids. Here we apply a comparative approach to examine the variation of floral functional traits in food- and sex-deceptive orchids. To understand if a specific deception strategy is related to a specific variation in floral traits evaluated the variation in sterile and fertile traits among species and subsequently examined the correlations between male and female reproductive organs of the same species with the aim of investigating the role of the lock and key hypothesis in deceptive orchids. Our results show that the functional morphology of fertile traits plays a pivotal role in limiting gene flow in species that grow in sympatry. In particular, it was observed that the Reproductive Standardisation Index (RSI) is significantly different in the two pollination strategies and that the correlation between pollinarium length and stigmatic cavity length is stronger in food-deceptive species when compared to the sex-deceptive species. These results reveal that the lock and key hypothesis contributes to maintain boundaries in plants with very complex floral morphology.

Keywords: lock key; key hypothesis; pollination strategies; floral traits; hypothesis

Journal Title: Plant biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.