LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Light, temperature and tocopherol status influence foliar vascular anatomy and leaf function in Arabidopsis thaliana.

Photo from wikipedia

This study addressed whether the winter annual Arabidopsis thaliana can adjust foliar phloem and xylem anatomy both differentially and in parallel. In plants acclimated to hot vs cool temperature, foliar… Click to show full abstract

This study addressed whether the winter annual Arabidopsis thaliana can adjust foliar phloem and xylem anatomy both differentially and in parallel. In plants acclimated to hot vs cool temperature, foliar minor vein xylem-to-phloem ratio was greater, whereas xylem and phloem responded concomitantly to growth light intensity. Across all growth conditions, xylem anatomy correlated with transpiration rate, while phloem anatomy correlated with photosynthetic capacity for two plant lines (wild-type Col-0 and tocopherol-deficient vte1 mutant) irrespective of tocopherol status. A high foliar vein density (VD) was associated with greater numbers and cross-sectional areas of both xylem and phloem cells per vein as well as higher rates of both photosynthesis and transpiration under high vs low light intensities. Under hot vs cool temperature, high foliar VD was associated with a higher xylem-to-phloem ratio and greater relative rates of transpiration to photosynthesis. Tocopherol status affected development of foliar vasculature as dependent on growth environment. The most notable impact of tocopherol deficiency was seen under hot growth temperature, where the vte1 mutant exhibited greater numbers of tracheary elements (TEs) per vein, a greater ratio of TEs to sieve elements, with smaller individual sizes of TEs, and resulting similar total areas of TEs per vein and transpiration rates compared with Col-0 wild-type. These findings illustrate the plasticity of foliar vascular anatomy acclimation to growth environment resulting from independent adjustments of the vasculature's components.

Keywords: phloem; temperature; anatomy; tocopherol status; foliar; tocopherol

Journal Title: Physiologia plantarum
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.