LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum).

Photo from wikipedia

Plants are often subjected to rapidly alternating light intensity and quality. While both short- and long-term changes in red and blue light affect leaf photosynthesis, their impact on dynamic photosynthesis… Click to show full abstract

Plants are often subjected to rapidly alternating light intensity and quality. While both short- and long-term changes in red and blue light affect leaf photosynthesis, their impact on dynamic photosynthesis is not well documented. It was tested how dynamic and steady-state photosynthetic traits were affected by red/blue ratios, either during growth or during measurements, in tomato leaves. Four red/blue ratios were used: monochromatic red (R100 ), monochromatic blue (B100 ), a red/blue light ratio of 9:1 (R90 B10 ) and a red/blue light ratio of 7:3 (R70 B30 ). R100 grown leaves showed decreased photosynthetic capacity (maximum rates of light-saturated photosynthesis, carboxylation, electron transport and triose phosphate use), leaf thickness and nitrogen concentrations. Acclimation to various red/blue ratios had limited effects on photosynthetic induction in dark-adapted leaves. B100 -grown leaves had a approximately 15% larger initial NPQ transient than the other treatments, which may be beneficial for photoprotection under fluctuating light. B100 -grown leaves also showed faster stomatal closure when exposed to low light intensity, which likely resulted from smaller stomata and higher stomatal density. When measured under different red/blue ratios, stomatal opening rate and photosynthetic induction rate were hardly accelerated by increased fractions of blue light in both growth chamber-grown leaves and greenhouse-grown leaves. However, steady-state photosynthesis rate 30 min after photosynthetic induction was strongly reduced in leaves exposed to B100 during the measurement. We conclude that varying red/blue light ratios during growth and measurement strongly affects steady-state photosynthesis, but has limited effects on photosynthetic induction rate.

Keywords: blue light; photosynthetic induction; blue; photosynthesis; red blue

Journal Title: Physiologia plantarum
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.