LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Does acclimation in cavitation resistance due to mechanical perturbation support the pit area or conduit reinforcement hypotheses in Phaseolus vulgaris?

Photo from wikipedia

Two Phaseolus vulgaris L. cultivars were exposed to reduced water and stem mechanical perturbation treatments (flexing) to determine if acclimation to these treatments induced hydraulic changes, altered cavitation resistance and… Click to show full abstract

Two Phaseolus vulgaris L. cultivars were exposed to reduced water and stem mechanical perturbation treatments (flexing) to determine if acclimation to these treatments induced hydraulic changes, altered cavitation resistance and changed stem mechanical properties. Additionally, this study sought to determine if changes in cavitation resistance would support the pit area or conduit reinforcement hypotheses. Flexing reduced biomass, leaf area, xylem vessel area and hydraulic conductivity. One cultivar had greater measures of stem strength and cavitation resistance. Flexing increased cavitation resistance (P50 ) but did not increase Young's modulus, rigidity or flexural strength on dried stems. Stem rigidity and basal diameter were correlated with leaf mass. The ratio of conduit wall thickness to span [(t/b)h 2 ] increased under high water and flexing treatments while rigidity decreased for one cultivar exposed to both flexing and lower water suggesting an inability to compensate for two simultaneous stresses. Although P50 was not correlated with measures of mechanical strength, P50 was correlated with vessel diameter, consistent with the pit area hypothesis. This study confirmed that mechanical perturbation can impact xylem structural properties and result in altered plant water flow characteristics and cavitation resistance. Long-term hydraulic acclimation in these herbaceous annuals was constrained by similar tradeoffs that constrain hydraulic properties across species.

Keywords: cavitation resistance; pit area; cavitation; mechanical perturbation

Journal Title: Physiologia plantarum
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.