The impact of the form of nitrogen (N) source (nitrate versus ammonium) on the susceptibility to Alternaria brassicicola, a necrotrophic fungus, has been examined in Arabidopsis thaliana at the rosette… Click to show full abstract
The impact of the form of nitrogen (N) source (nitrate versus ammonium) on the susceptibility to Alternaria brassicicola, a necrotrophic fungus, has been examined in Arabidopsis thaliana at the rosette stage. Nitrate nutrition was found to increase fungal lesions considerably. There was a similar induction of defence gene expression following infection under both N nutritions, except for the phytoalexin deficient 3 gene, which was overexpressed with nitrate. Nitrate also led to a greater nitric oxide production occurring in planta during the saprophytic growth and lower nitrate reductase (NIA1) expression 7 days after inoculation. This suggests that nitrate reductase-dependent nitric oxide production had a dual role, whereby, despite its known role in the generic response to pathogens, it affected plant metabolism, and this facilitated fungal infection. In ammonium-grown plants, infection with A. brassicicola induced a stronger gene expression of ammonium transporters and significantly reduced the initially high ammonium content in the leaves. There was a significant interaction between N source and inoculation (presence versus absence of the fungus) on the total amino acid content, while N nutrition reconfigured the spectrum of major amino acids. Typically, a higher content of total amino acid, mainly due to a stronger increase in asparagine and glutamine, is observed under ammonium nutrition while, in nitrate-fed plants, glutamate was the only amino acid which content increased significantly after fungal inoculation. N nutrition thus appears to control fungal infection via a complex set of signalling and nutritional events, shedding light on how nitrate availability can modulate disease susceptibility.
               
Click one of the above tabs to view related content.