Nitrogen (N) fertilization is a promising approach to improve salt tolerance. However, it is poorly known how plant sex and inorganic N alter salt stress-induced Na+ uptake, distribution and tolerance.… Click to show full abstract
Nitrogen (N) fertilization is a promising approach to improve salt tolerance. However, it is poorly known how plant sex and inorganic N alter salt stress-induced Na+ uptake, distribution and tolerance. This study employed Populus cathayana Rehder females and males to examine sex-related mechanisms of salt tolerance under nitrate (NO3 - ) and ammonium (NH4 + ) nutrition. Males had a higher root Na+ efflux, lower root-to-shoot translocation of Na+ and higher K+ /Na+ , which enhanced salt tolerance under both N forms compared to females. On the other hand, decreased root Na+ efflux and K+ retention, and an increased ratio of Na+ in leaves relative to shoots in females caused greater salt sensitivity. Females receiving NH4 + rather than NO3 - had greater net root Na+ uptake, K+ efflux and translocation to the shoots, especially in leaves. In contrast, males receiving NO3 - rather than NH4 + had increased Na+ translocation to the shoots, especially in the bark, which may narrow the difference in leaf damage by salt stress between N forms despite a higher shoot Na+ accumulation and lower root Na+ efflux. Genes related to cell wall synthesis, K+ and Na+ transporters and denaturized protein scavenging in the barks showed differential expression between females and males in response to salt stress under both N forms. These results suggested that the regulation of N forms in salt stress tolerance was sex-dependent, which was related to the maintenance of the K+ /Na+ ratio in tissues, the ability of Na+ translocation to the shoots, and the transcriptional regulation of bark cell wall and proteolysis profiles. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.