The Nuclear Factor Y (NF-Y) is an important transcription factor family that regulates plant developmental processes and abiotic stress responses. Currently, genome-wide studies of the NF-Y family are limited in… Click to show full abstract
The Nuclear Factor Y (NF-Y) is an important transcription factor family that regulates plant developmental processes and abiotic stress responses. Currently, genome-wide studies of the NF-Y family are limited in Fagopyrum tataricum, an important economic crop. Based on the released genome assembly, we predicted a total of 38 NF-Y encoding genes (FtNF-Ys), including 12 FtNF-YAs, 18 FtNF-YBs and eight FtNF-YCs subunits, in F. tataricum. Phylogenetic tree and sequence alignments showed that FtNF-Ys were conserved between F. tataricum and other species. Tissue expressions and network analyses suggested that FtNF-Ys might be involved in regulating developmental processes in different tissues. Several FtNF-YAs and FtNF-Ybs were also potentially involved in light response. In addition, FtNF-YC-like1 and FtNF-YC-like2 partially rescued the late flowering phenotype in nf-yc1 nf-yc3 nf-yc4 nf-yc9 (ycQ) mutant in Arabidopsis thaliana, supporting a conserved role of FtNF-Ys in regulating developmental processes. Together, the genomic information provides a comprehensive understanding of the NF-Y transcription factors in F. tataricum, which will be useful for further investigation of their functions in F. tataricum.
               
Click one of the above tabs to view related content.