Feedback learning is thought to involve the dopamine system and its projection sites in the basal ganglia and anterior cingulate cortex (ACC), regions associated with procedural learning. Under certain conditions,… Click to show full abstract
Feedback learning is thought to involve the dopamine system and its projection sites in the basal ganglia and anterior cingulate cortex (ACC), regions associated with procedural learning. Under certain conditions, such as when feedback is delayed, feedback-locked activation is pronounced in the medial temporal lobe (MTL), which is associated with declarative learning. In event-related potential research, the feedback-related negativity (FRN) has been linked to immediate feedback processing, while the N170, possibly reflecting MTL activity, has been related to delayed feedback processing. In the current study, we performed an exploratory investigation on the relation between N170 and FRN amplitude and memory performance in a test for declarative memory (free recall), also exploring the role of feedback delay. To this end, we adapted a paradigm in which participants learned associations between non-objects and non-words with either immediate or delayed feedback, and added a subsequent free recall test. We indeed found that N170, but not FRN amplitudes, depended on later free recall performance, with smaller amplitudes for later remembered non-words. In an additional analysis with memory performance as dependent variable, the N170, but not the FRN amplitude predicted free recall, modulated by feedback timing and valence. This finding shows that the N170 reflects an important process during feedback processing, possibly related to expectations and their violation, but is distinct from the process reflected by the FRN.
               
Click one of the above tabs to view related content.