Establishment of European eel (Anguilla anguilla) hatchery production will rely on selectively bred individuals that produce progeny with the best traits in successive generations. As such, this study used a… Click to show full abstract
Establishment of European eel (Anguilla anguilla) hatchery production will rely on selectively bred individuals that produce progeny with the best traits in successive generations. As such, this study used a quantitative genetic breeding design, between four females and nine males (four wild-caught and five cultured), to investigate the effect of paternal origin (wild-caught vs. cultured) and quantify the relative importance of parental effects, including genetic compatibility, on early life history (ELH) performance traits (i.e. fertilization success, embryonic survival at 32 hr post-fertilization, hatch success and larval deformities at 2 days post-hatch) of European eel. Wild-caught males had higher (56%) spermatocrit values than cultured males (45%), while fertilization success, embryonic survival, hatch success and larval deformities were not significantly impacted by paternal origin. This demonstrates that short-term domestication of male eels does not negatively affect offspring quality and enables the consideration of cultured male broodstock in future breeding programmes. Moreover, paternity significantly explained 9.5% of the variability in embryonic survival, providing further evidence that paternal effects need to be taken into consideration in assisted reproduction protocols. Furthermore, maternity significantly explained 54.8% of the variation for fertilization success, 61.7% for embryonic survival, 88.1% for hatching success and 62.8% for larval deformities, validating that maternity is a major factor influencing these "critical" ELH traits. At last, the parental interaction explained 12.8% of the variation for fertilization success, 8.3% for embryonic survival, 4.5% for hatch success and 20.5% for larval deformities. Thus, we conclude that eggs of one female can develop more successfully when crossed with a compatible male, highlighting the importance of mate choice for successful propagation of high-quality offspring. Together, this knowledge will improve early offspring performance, leading to future breeding programmes for this critically endangered and economically important species.
               
Click one of the above tabs to view related content.